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Finite-difference, time-domaitFDTD) calculations are typically performed with partial differential
equations that are first order in time. Equation sets appropriate for FDTD calculations in a moving
inhomogeneous mediurfwith an emphasis on the atmospheage derived and discussed in this
paper. Two candidate equation sets, both derived from linearized equations of fluid dynamics, are
proposed. The first, which contains three coupled equations for the sound pressure, vector acoustic
velocity, and acoustic density, is obtained without any approximations. The second, which contains
two coupled equations for the sound pressure and vector acoustic velocity, is derived by ignoring
terms proportional to the divergence of the medium velocity and the gradient of the ambient
pressure. It is shown that the second set has the same or a wider range of applicability than equations
for the sound pressure that have been previously used for analytical and numerical studies of sound
propagation in a moving atmosphere. Practical FDTD implementation of the second set of equations
is discussed. Results show good agreement with theoretical predictions of the sound pressure due to
a point monochromatic source in a uniform, high Mach number flow and with Fast Field Program
calculations of sound propagation in a stratified moving atmospher@0@ Acoustical Society of
America. [DOI: 10.1121/1.1841531

PACS numbers: 43.20.Bi, 43.28[0dO] Pages: 503-517

I. INTRODUCTION and references therginAlthough these equations were ob-
tained with different assumptions and/or approximations, all
Finite-difference, time-domaifFDTD) techniques have contain second- or higher-order derivatives of the sound
drawn substantial interest recently due to their ability topressure with respect to time, and are therefore not amenable
readily handle complicated phenomena in outdoor soung first-order FDTD techniques. Our main goal in the present
propagation such as scattering from buildings and trees, dysaper is to derive equation sets that are appropriate as start-
namic turbulence fields, complex moving source distribu-ing equations in FDTD simulations of sound propagation in a
tions, and propagation of transient signal8These phenom-  moving inhomogeneous atmosphere and to study the range
ena are difficult to handle with frequency—domain of applicability of these sets.
techniques that are currently widely used, such as parabolic The most general possible approach to sound propaga-
equation approximations and the Fast Field Prog(&FP. jon in a moving inhomogeneous medium would be based on
FDTD techniques typically solve coupled sets of partial dif-5 girect solution of the complete set of linearized equations
ferential equations that are first order in time. In this regard ot fiuid dynamic2-1+15which are first-order partial differ-
they are a departure from methodologies such as the pargptia| equations. Although this set could be used as starting
bolic approximation, which solve a single equation for theeqations for FDTD codes, even with modern computers it is
sound pressure that is second order in time. Many suchy, inyolved to be practical. Furthermore, this set contains
single equatlolns for the sounq pressure in a moving iNhOMOe ambient pressure and entropy, which are not usually con-
geneous medium are known in the literatisee Refs. 9-14  gjqereq in studies of sound propagation in the atmosphere.
Therefore, it is worthwhile to find simplified equation sets
dportions of this work were presented in V. E. Ostashey, L. Liu, D. K. for use in FDTD calculations.
Wilson, M. L. Moran, D. F. Aldridge, and D. Marlin, “Starting equations | the present paper, the complete set of linearized equa-
for direct numerical simulation of sound propagation in the atmosphere, ions of fluid dynamics ina moving inhomogeneous medium

Proceedings of the 10th International Symposium on Long Range Sount ' ) =
Propagation Grenoble, France, Sept. 2002, pp. 73—81. is reduced to two simpler sets that are first order in time and
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three coupled equations involving the sound pressure, vector S=0, 3
acoustic(particle velocity, and acoustic density. No approxi-
mations are made in deriving this set. The second set con- B=P(5.3). (4)

tains two coupled equations for the sound pressure and vec-

tor acoustic velocity. Although the second set describesn Eqs.(1)—(4), V =(d/9x,d/3y,dl9z), g=(0,09) is the ac-
sound propagation only approximately, the assumptions inceleration due to gravity, anel and Q characterize a force
volved in deriving the second set are quite reasonable icting on the medium and a mass source, respectively. For
atmospheric acoustics: Terms proportional to the divergencgmp"city, we do not consider the case when a passive com-
of the medium VelOCity and the gradient of the ambient at-ponent is dissolved in a mediu(’a_g_, water vapor in the dry
mospheric pressure are ignored. To better understand thgr or salt in water This case is considered in detail
range of applicability of the second set, we compare the seaf|sewheré:!’

with equations for the sound pressure that have been previ- |f 2 sound wave propagates in a medium, in Ea$-(4)

ously ust.ed in analytical atnd nu;nericalltl .stuiies Ofths?utﬂqf’, D, V, and'S can be expressed in the following forrR:
propagation in a moving atmosphere. It is shown that the 7 "o " o1 LT iR S o Here P, o, v,

second set has the same or a wider range of applicability thaar1'ndS are the ambient valugge., the values in the absence
these equations for the sound pressure.

. . : f a sound waveof the pressure, density, medium velocity,
Furthermore in the present paper, a basic numerical al- . : :
. . : ; and entropy in a medium, arg », w, ands are their fluc-
gorithm for solving the second set of equations in two-_ . . .
. . T o tuations due to a propagating sound wave. In order to obtain
dimensional(2-D) moving inhomogeneous media is devel-

oped. Issues related to the finite-difference approximation O?QUBIIOHS for a sound wave, E$)—(4) are linearized with

i s ! espect top, 7, w, ands. Assuming that a sound wave is
the spatial and temporal derivatives are discussed. FDTISenerated by the mass sou@eand/or the force® and in-

solutions are obtained for a homogenous uniformly movin . L . )
. o . : roducing the full derivative with respect to time/dt
medium and for a stratified moving atmosphere. The first of
=d/dt+v-V, we have

these solutions is compared with an analytical formula for
the sound pressure due to a point monochromatic source ina gy Vp VP
uniformly moving medium. The second solution is compared ar +(w-V)v+ o o =Flo, 5)
with predictions from before FFP.

Although the explicit emphasis of the discussion in this
paper is on sound propagation in a moving inhomogeneous —77+(W-V)Q+QV'W+ nVv=p0Q, (6)
atmosphere, most of the derived equations are also valid for dt
a general case of sound propagation in a moving inhomoge-
neous medium with an arbitrary equation of state, e.g., in the
ocean with currents. Equations presented in the paper are dt
also compared with those known in aeroacoustics.

The paper is organized as follows. In Sec. I, we con-

sider the complete set of equations of fluid dynamics anqﬂere c=JaP(e.9)/ae is the adiabatic sound speed, and
their linearization. In Sec. Ill, the linearized equations arey, pl’:\rameteln is given byh=aP(0,S)/4S. The set of E'qs.

reduced to the set of three coupled equations for the sou )—(8) provides a most general déscription of sound propa-
pressure, acoustic velocity, and acoustic density. In Sec. | Eaﬁon in a moving inhomogeneous medium with only one

amenable to FDTD implementation. The first set contains ( 9

ds
—+(w-V)S=0, (7

p=nc’+hs. 8

we conS|derc}he set tc_)f twcl> cc.>tupINed equ.at|lolns flor thetact:_ousu omponent. In order to calculage », w, ands, one needs to
pressure and acoustic velocity. Numerical implementation of - «h o o biant quantities, o, v, P, S, andh. Note that

this set is considered in Sec. V. Egs. (5)—(8) describe the propagation of both acoustic and
internal gravity waves, as well as vorticity and entropy
waves(e.g., Ref. 18
II. EQUATIONS OF FLUID DYNAMICS AND THEIR Equations(5)—(8) were derived for the first time by
LINEARIZATION Blokhintzev in 1946’ Since then, these equations have been
~ _ widely used in studies of sound propagatiéeg., Refs.
Let P(R,t) be the pressurz(R,t) the density¥(R,t)  9-11). In the general case of a moving inhomogeneous me-
the velocity vector, and(R,t) the entropy in a medium. dium, Egs.(5)—(8) cannot be exactly reduced to a single
Here, R=(x,y,z) are the Cartesian coordinates, ands  equation for the sound pressupe In the literature, Egs.
time. These functions satisfy a complete set of fluid dynamig5)—(8) have been reduced to equations fiormaking use of
equationge.g. Ref. 16 different approximations or assumptions about the ambient
~ medium. These equations fprwere subsequently used for
—+T/-V)T/+ E_ —F/3 1) analytical and numerical studies of sound propagation. They
d 0 ' are discussed in Sec. IV. Note that the equationgfnown
in the literature contain the following ambient quantities:
0, andv. On the other hand, the linearized equations of fluid
dynamics, Eqgs(5)—(8), contain not onlyc, g, andv, but

—+\~/.V)é+~gv~\7="g‘Q, 2
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alsoP, S, andh. This fact indicates that the effect &f, S, P(B3 9
andh on sound propagation is probably small for most oft?= ———=—P(g+ 7,S+5)
problems considered so far in the literature. Y Je
The effect of medium motion on sound propagation is J 9P(0,9) 9P(0,S)
also studied in aeroacoustics, e.g., see Refs. 12, 19-24 and= —|P(¢,5)+ 70 n+ S S
references therein. In aeroacoustics, the starting equations
coincide with Eqs(1)—(4) but might also include terms de- dP(0,S) d*P(0,S)  4°P(@,S)
scribing viscosity and thermal conductivity in a medium. Us- = "5, + 902 7T 5008 S: (11)

ing these equations of fluid dynamics, equations for sound _ . ) _ o

waves are derived which have some similarities with Eqgs.n€ first term n the last I|2e of this equation is equatfo
(5—(8). For example, Eqs(5)—(8) are equivalent to Egs. DenoEgg 32:5 P(Q’S)MQZ anzd a=d P(Q’ZS)/aWS, we
(1.11) from Ref. 12, and Eq(6) can be found in Refs. 19, 22, havet =c+Bn+as=c°+(c?)’. Here, €°)'=B7n+tas

23. The main difference between E@S)—(8) and those in &€ fluctuations in the squared sound speed due to a propa-
aeroacoustics are sound sources. In atmospheric acoustics 3@ting sound wave. In this fé)rmula,can be replaced by its
Egs.(5)—(8) the sources andQ are assumed to be known value frgm Eq.(8): s=(p—c 7/)”?- As a result, we obtain
and are loudspeakers, car engines, etc. In aeroacoustics, thélg deS|r2ed formula 2for fluctuations in the squared sound
sources have to be calculated and are those due to ambietReed: €°)'=(8—ac/h)n+ap/h. _ _

flow. Furthermore in some formulations in aeroacoustics, the ~ NOW we can linearize Eq(10). In this eqlJatlon, we
left-hand side of Eq(5) contains nonlinear ternfd:2Note ~ expressP, ¢, V, andt? as the sumsP=P+p, o=0+ 7,

that FDTD calculations are nowadays widely used in aeroaV=V+Ww, andé?=c?+(c?)’. Linearizing the resulting equa-

coustics, e.g., Refs. 19, 20, 24. tion with respect to acoustic quantities, we have
Also note that in aeroacoustics it is sometimes assumed d
that the ambient medium is incompressible and/or isentropic, ——+c?V-w+w-VP+ (c?5+¢(c?)’)V-v=p0c%Q.

i.e., S=const. Generally, these assumptions are inappropriate dt

for atmospheric acoustics. Indeed, sound waves can be sig- (12)
nificantly scattered by density fluctuations, e.g., see Sedn this equation, ¢?)’ is replaced by its value obtained
6.1.4 from Ref. 9. Furthermore, in a stratified atmosptfere above. As a result, we arrive at the following equation for
depends on the height above the ground. The range of applitp/dt:

cability of the assumptiors= const(which is equivalent to

s=0 or p=c?y) is studied in Sec. 2.2.4 from Ref. 9. For a —p+QCZV-W+W-VP+{[QB+CZ(1—aQ/h)]n
- / - R . : dt
stratified medium, this assumption is not applicable if the
scale of the ambient density variations is smaller than the +(ag/h)p}V-v=p0c?Q. (13

sound wave length or if the ambient density noticeably

changes with height. Equations(5), (6), and (13) comprise a desired set of

three coupled equations fqr, w, and . This set was ob-
tained from linearized equations of fluid dynamics, E§$-—

(8), without any approximations. The set can be used as start-
ll. SET OF THREE COUPLED EQUATIONS ing equations for FDTD simulations. In this set, one needs to

A. Moving medium with an arbitrary equation of state know the following ambient quantities; ¢, v, P, «, B, and

Applying the operator /9t +V-V) to both sides of Eq.

4) and using Eq(3), we have . :
“ 9 Bq® B. Set of three equations for an ideal gas

U PO (U In most applications, the atmosphere can be considered
S VUV |P=T = +V-V e, (9 as an ideal gas. In this case, the equation of state feagls
Refs. 9, 17 as
wheret?=gP(,5)/de differs from the square of the adia- P=Py(e/00)” exd (y—1)(S—Sy)/Ra], (14)

batic sound speed?=dP(g,S)/de. Using Eq.(2), Eq. (9)

can be written as where y= 1.4 is the ratio of specific heats at constant pres-

sure and constant volumBy is the gas constant for the air,
J and the subscript O indicates reference values,af, andsS.
—+V-V)I3+62§V-\7=EZEQ. (10) Using Eq.(14), the sound speed and the coefficients, S,
at and h appearing in Eq(13) can be calcglated:2=yP/Q,

a= —1)P/(0Ry), = —1)P/p%, and h=
The next step is to linearize E¢L0) to obtain an equation _ 1)7|3(7Ra. )Suk()gtitaiing lties):a( ?/alugs igto E3), we heg\ale
for acoustic quantities. To do so we need to calculate the

value of¢?=9P(0,5)/d0 to the first order in acoustic per- ?jL 0C?V-WHW-VP + ypV-v=0c20. (15)
turbations. In this formula, we expregsandS as the sums

o=0+7 andS=S+s, decompose the functida into Tay- A set of Egs.(5), (6), and(15) is a closed set of three
lor series, and keep the terms of the first ordemiands: coupled equations fop, w, and » for the case of an ideal
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gas. To solve these equations, one needs to know the follow- Equations(17) and (18) were derived in Ref. 2%see

ing ambient quantitiesc, ¢, v, andP. also Egs.(2.68 and (2.69 from Ref. 9 using a different
Let us compare Eqg5), (6), and(15) with a closed set approach. In these references, E(s) and (18) were de-

of equations foip andw from Ref. 1; see Eqg12) and(13) rived for the case of a moving inhomogeneous medium with

from that reference. The latter set was used in Refs. 1, 2 amore than one componeiie.g., humid air or salt watgr

starting equations for FDTD simulations of outdoor soundEquations(17) and(18) are somewhat similar to the starting

propagation. 1fQ=0, Eq.(15) in the present paper is essen- equations in FDTD simulations used in Ref. 3; see E4G)

tially the same as Eq13) from Ref. 1.[Note that Eq(15)is  and (12) from that reference. The last of these equations

also used in aeroacoustics, e.g., Ref] Farthermore for the coincides with Eq(17) while the first is given by

case of a nonabsorbing medium, E42) from Ref. 1 is

. W Vp
given by — —wWX(VXV)+ — +V[w-v]=0. (19
d Vp pvP ” ¢o
w
a+(w-V)v+ AL pTzo. (16) Using vector algebra, the left-hand side of this equation can
e e be written as a left-hand side of E(.8) plus an extra term

Let us show that this equation is an approximate version ofX(V Xw). Equations(10) and (12) from Ref. 3 were ob-
Eq. (5) in the present paper. Indeed, in Ef) we replace  tained using several assumptions that were not employed in
by its value from Eq(8): »=(p—hs)/c?, and assume that the present paper when deriving Eq$7) and (18): av/at
s=0. If F=0, the resulting equation coincides with E6). =doldt=V =0, c is constant, andw/Jt>vX(V Xw). It
Thus, for an ideal gas anB=0 andQ=0, Egs.(12) and follows from the last inequality that the “extra” term
(13) from Ref. 1 are equivalent to Eq&) and (15) in the  vX(VXw) in Eq. (19) can actually be omitted. Note that in
present paper i can be set to 0. The range of applicability Ref. 4 different starting equations were used in simulations
of the approximatiors=0 is considered above. of sound propagation in a muffler with a low Mach number
flow. The use of Eq(19) resulted in increase of stability in
such simulations.

Also note that equations fqr andw similar to Eqs(17)
A. Set of equations for p and w and (18) are used in aeroacoustics, e.g. Refs. 20, 24. The
left-hand sides of Eq97) in Ref. 20 contain several extra
terms in comparison with the left-hand sides of E4dS) and
(18) which, however, vanish WP=0 andV-v=0. The left-
hand sides of Eq$75) and(76) in Ref. 24 also contain extra
terms in comparison with the left-hand sides of E43) and
(18), e.g., terms proportional to the gradientaind. The
right-hand sides of the equations in Refs. 20, 24 describe
aeroacoustic sources and differ from those in Ef%) and

IV. SET OF TWO COUPLED EQUATIONS

In atmospheric acoustics, Eq$) and(13) can be sim-
plified sincev is always much less than First, using Ref.
16, it can be shown thaV-v~v°%/(c?L), wherelL is the
length scale of variations in the densggy Therefore, in Eq.
(13) the term proportional t&v-v can be ignored to order
v?/c?. Second, in Eqg5) and(13) the terms proportional to
VP can also be ignored. Indeed, in a moving inhomoge
neous atmospher¥ P is of the orderv?/c? so that these
terms can be ignored to ordefc. Furthermore, in a strati- (18). o . . . o
fied atmospheréy P= — go, whereg is the acceleration due At_ the beginning o_f th|_s_sect|on, we provided sufficient
to gravity. It is known that, in linearized equations of fluid conditions for the applicability of Eqs17) and (18). Actu-

dynamics, terms proportional ® are important for internal  &/lY, the range of applicability of these equations can be
gravity waves and can be omitted for acoustic waves. much wider. Note that it is quite difficult to estimate with

With these approximations, Eq&3) and (5) become what accuracy one can ignore certain terms in differential
’ equations. We will study the range of applicability of Egs.

(17) and (18) by comparing them with equations for the
sound pressurp presented in Secs. IV B—IV F, which have
been most often used for analytical and numerical studies of
i+v-V)w+(w-V)v+ E=F/Q. (19 sour_nd p_rqpagation in moving _media and whose ranges of
at applicability are well known. This will allow us to show that
Equations(17) and (18) comprise the desired closed set of EAS:(17) and(18) have the same of a wider range of appli-
two coupled equations fgr andw. This set can also be used CaPility than these equations fprand, in many cases, de-

in FDTD simulations of sound propagation in the atmo-SCcribe sound propagation to any ordewift. For simplicity,
sphere. In order to solve this set, one needs to know thi the rest of this section, we assume that0, Q=0, and
following ambient quantitiesc, ¢, andv. These ambient the medium velocity is subsonic.

guantities appear in equations for the sound presguiret
have been most often used for analytical and numerical studé Nonmoving medium
ies of sound propagation in moving media. The set of Egs.™ 9

(17) and (18) is simpler than the set of three coupled equa-  Consider the case of a nonmoving medium whken0.
tions, Egs.(5), (6), and(13), and does not contain the ambi- In this case, the set of linearized equations of fluid dynamics,
ent quantitied, «, B, andh. It can be shown that Eq§l7) Egs. (5—(8), can be exactlywithout any approximations
and (18) describe the propagation of acoustic and vorticityreduced to a single equation for sound pressufe.g., see
waves but do not describe entropy or internal gravity waveskq. (1.11) from Ref. 11:

0
E+V'V)p+ oc?V-w=pc%Q, (17)
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(L) v %) 20 0~ [ [ aaf dw exmiar—tovm, @z

pn Wﬁ -V. ? =0. (20 w, (r,z,t)= al do expliar—iot)W, (a,z,0).
2

For the considered case of a nonmoving medium, Egs. @)

(17) and(18) can also be reduced to a single equationgfor Here,r=(x,y) are the horizontal coordinates,is the hori-

This equation coincides with Eq20). Therefore, Eqs(17) zontal component oj the wave vectarjs the frequency_of a
and (18) describe sound propagation exactlyif 0. sound wave, anf, W,, andw, are the spectral densities of
p, w,, andw, . We substitute Eq$25)—(27) into Eqgs.(22)—

(24). As a result, we obtain a set of equations fipnv,, and

C. Homogeneous uniformly moving medium W, :
A medium is homogeneous and uniformly moving if the i o 219\7Vz
ambient quantities, v, etc. do not depend oR andt. For —i(w—av )ptieciaw, +ec’——-=0, (28)
such a medium, the linearized equations of fluid dynamics, .
Egs.(5—(8) can also be exactly reduced to a single equation .~ . i p _
for p (see Sec. 2.3.6 from Ref. 9 and references thgrein Hw=av, W, + o 9z 0. 29
J 2 22 |af)
E‘FV'V p—cC_C \% p=0. (21) —i(w—a-vL)v”vl+vi\ivz+?=0. (30

For the case of a homogeneous uniformly moving me-After some algebra, this set of equations can be reduced to a
dium, Egs.(17) and(18) can be reduced to the equation for single equation fop:
p that coincides with Eq(21). Therefore, Eqs(17) and(18) -
describe sound propagation exactly in a homogeneous uni- 9P + B e —a?|p=0
formly moving medium. In particular, they correctly account 922 \w-av, ¢z c ’
for terms of any order in/c. (32)
wherep’=dp/dz

For the considered case of a stratified moving medium, a
single equation fop can also be derived from Eq&)—(8)

Now let us consider the case of a stratified mediumwithout any approximations. This equation foiis given by
when the ambient quantities g, v, etc. depend only on the Eq. (2.61) from Ref. 9. Settingg=0 in this equation(i.e.
vertical coordinate. We will assume that the vertical com- ignoring internal gravity wavesone obtains Eq(31). There-
ponent ofv is zero:v=(v,,0), wherev, is a horizontal fore, Egs.(17) and(18) describe sound propagation exactly
component of the medium velocity vector. In this subsectionjn a stratified moving medium, and, hence, correctly account
we reduce Egs(17) and (18) to a single equation for the for terms of any order iw/c.
spectral density of the sound pressure and show that this

2arv e')am((w—a-vf A

D. Stratified moving medium

equation coincides with the equation for the spectral densityé )
that can be derived from Eqg5)—(8). - Turbulent medium
For a stratified moving medium, EGL7) can be written Probably the most general of the equations describing
as the propagation of a monochromatic sound wave in turbulent
9 aw, media with temperature and velocity fluctuations is given by
VeV lpt oc? V, -w, + E) =0. (220  Eq.(6.1) from Ref. 9:

Here, V, =(d/9x,d/dy), andw, andw, are the horizontal

P % 2i r?vi (92
A+t o)~ Vin ).
0

and vertical components of the vectar=(w, ,w,). Equa- @ IXj XX

tion (18) can be written as two equations: 2ik,
9 1 p +C—OV'V p(R):O (32
STV Wt o= =0, )
at e iz Here, A= 2/9x?+ 019y + 3?1 9z%; e=c3lc?—1; Ko, Cq,
P V.p and o, are the reference values of the wave number, adia-
E_I—VJ_'VJ_ W, +w,v + ?=0. (24)  batic sound speed, and density; X,, X3 stand forx, y, z;

V1=Vy, Up=Vy, V3=V, are the components of the medium
Here,v| =dv, /dz. Letp, w, , andw, be expressed as Fou- velocity vectorv; and repeated subscripts are summed from

rier integrals: 1 to 3. Furthermore, the dependence of the sound pressure on
the time factor expfiowt) is omitted.
p(r’z’t):f f daf do expliar—iwt)p(az,w), The range of applicability of Eq.32) is considered in
detail in Sec. 2.3 from Ref. 9. This equation was used for

(25 calculations of the sound scattering cross section per unit

_ ) . R volume of a sound wave propagating in a turbulent medium
W(r,z,1) = da| do expliar—iwt)W,(a,z,0), with temperature and velocity fluctuations. Also it was em-
(26) ployed as a starting equation for developing a theory of mul-
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tiple scattering of a sound wave propagating in such a turbu- de

lent medium; see Ref. 9 and references therein. Furthermore, ©C°W;-VO+p; TR (40
starting from Eq.(32), parabolic and wide-angle parabolic
equations were derived and used in analytical and numerical de Vo
studies of sound propagation in a turbulent medium, e.g., Wlﬁ“’l?:o- (41)
Ref. 26. For example, a parabolic equation deduced from Eq.
(32) reads as Equating terms proportional t, we obtain another set:
do dp

2iko— i L HALP+2KG| 1+ "2“”) p=0. (33 0C?Wy VO +py = - dtl ec?V-wy, (42)
Here, the predominant direction of sound propagation coin- de p2V® dw, Vp;
cidzes /with thex-axis, A, = (0°/9y?,d%197?), and emg=¢ A T T (wy-V)v— o (43
- UX Co.

In Ref. 9, Eq.(32) was derived starting from the set of From Eq.(41), we have
Egs. (17) and (18) and using some approximations. There-

. . N~ p, VO

fore, this set has the same or a wider range of applicability — y,=—-—= (44)

than equations fop that have been used in the literature for ¢ do/dt’

analytical and numerical studies of sound propagation in & pstituting this value ofv; into Eq. (40), we obtain
turbulent medium with temperature and velocity fluctuations.

40)°_ 2 vV0)? 45
qr) ~¢(vVe) (45
F. Geometrical acoustics From this equation, we obtain an eikonal equation for the

Sound propagation in a moving inhomogeneous mediunPhase function:
is often described in geometrical acoustics approximation
which is applicable if the sound wavelength is much smaller ——=—c¢c|V@|. (46)
than the scale of medium inhomogeneities. In geometrical
acoustics, the phase of a sound wave can be obtained as+are, a sign in front ofV@| is chosen in accordance with the
solution of the eikonal equation, and its amplitude from thetime convention expfiwt). Equation(46) coincides exactly
transport equation. In this subsection, starting from E4jB.  with the eikonal equation for sound waves in a moving in-
and (18), we derive eikonal and transport equations anthomogeneous mediurte.g., see Eq(3.15 from Ref. 9
show that they are in agreement with those deduced fromyhich can be derived from Eq$5)—(8) in a geometrical

Egs.(5)—(8). _ _ acoustics approximation. Thus, in this approximation, Egs.
Let us expres® andw in the following form: (17) and (18) exactly describe the phase of a sound wave
R )= ik-O(R R 4 and, hence, account for terms of any ordevic.
PR =expliko®(R.DIPAR.Y (34 Substituting the value ad®/dt from Eq. (46) into Eq.
w(R,t)=expliko®(R,t))Wa(R,t). (35  (44), we have
Here, ®(R,t) is the phase function, angy, andw, are the P Ve _pan
amplitudes ofp andw. Substituting Eqs(34) and (35) into Wl_? clve|  ec’ (47)

Egs.(17) and(18), we have

wheren= V@®/|V0]| is the unit vector normal to the phase
front. Now we multiply Eq.(42) by d®/dt and multiply Eq.
(43) by c?20V®. Then, we subtract the latter equation from
the former. After some algebra and using E£p), it can be
iko( de pAV(E)) __ dw, Vpa shown that the sum of all terms proportionalggandws, is

Wp——+ Wy - V)v———, . .
Adt 0 dt (Wa- V) 0 zero. The resulting equation reads as

(37

dp,
In geometrical acousticp,, andw, are expressed as a series —— at
in a small parameter proportional tokd/

do| dpa
iko| 0C?Wa- VO +pp—— It T V-w,, (36)

dw,
+cn-Vp;+ocn- d—+gcn (wq-V)v

+0¢?V-w;=0. (48)
—pr 2, P L 38
Pa=P1 E (iko) (38) In this equationw; is replaced by its value given by Eq.
(47). As a result, we obtain
e, Moy (39) d 1d '
Wa=W — T e n ne n
AZWIY i T (k)2 @._(ﬂ) 1dp VP g ( pl)
c dt\pgc/ c° dt c ec
Substituting Eqs(38) and (39) into Egs.(36) and (37) and
equating terms proportional tg,, we arrive at a set of equa- pin-(n-V)v 49
tions: * c? e 49
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In geometrical acoustics, the amplitudg of the sound pres-
sure is approximated by, . Equation(49) is a closed equa-
tion for p4; i.e., it is a transport equation.

The second term on the left-hand side of E&f) can be
written as

dp, _d pl)+
dt  dt|c?

Here, we used the formuldc?®/dt= Bde/dt; see Eq(2.63
from Ref. 9. According to Eq(2), do/dt in Eq. (50) can be
replaced with— o V-v. When deriving Egs(17) and (18),
terms proportional tdv-v were ignored. Therefore, the last
term on the right-hand side of E¢50) should also be ig-
nored. In this case, Eq49) can be written as

1 p, Bde
2 & ar - 0

pldcz_ d(p;
ctdt  dt\c?

en d(np;| d(py| nVp; (npl
TE(E%&(?% ¢ tevoe
n-(n-V)v
+%2—)=0. (51)

This equation coincides with E3.18) from Ref. 9 if in the
latter equation terms proportional ¥-v are ignored. Equa-
tion (3.18 is an exact transport equation fpi in the geo-
metrical acoustics derived from Eq&)—(8). Thus, if the
terms proportional tov-v are ignored, Eqs(17) and (18)

exactly describe the amplitude of a sound wave in a geo-
metrical acoustics approximation, and correctly account for

terms of any order in/c. Note that in Ref. 9 starting from
the transport equation, E¢3.18, a law of acoustic energy

T
+
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]
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FIG. 1. Spatially staggered finite-difference grid used for the calculations in
this article.
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whereb=1/p is the mass buoyancy and=pc? is the adia-

conservation in geometrical acoustics of moving media isatic bulk modulus. In Eq$52)—(54), the subscriptg andy

derived; see Eq(3.21) from that reference. Since E¢(1)
coincides with Eq(3.18, the same lavi.e., Eq.(3.21) from
Ref. 9 can be derived from Eq51) provided that the terms
proportional toV-v are ignored.

G. Discussion
Thus, by comparing a set of Eq4.7) and(18) with the

equations foip which are widely used in atmospheric acous-
tics, we determined that this set has the same or a wider

range of applicability than these equations forNote that
there are other equations fprknown in the literaturgsee
Refs. 9, 11, 17 and references thejeiMonin’s equation,

indicate components along the corresponding coordinate
axes.

The primary numerical issues pertinent to solving these
equations in a moving inhomogeneous medium are summa-
rized and addressed in Secs. V A-V C. Example calculations
are provided in Secs. VD and VE.

A. Spatial finite-difference approximations

The spatial finite-differencéFD) network considered
here stores the pressure and particle velocities on a grid that
is staggered in space, as shown in Fig. 1. The pressure is
stored at integer node positions, namedyi Ax and y

Pierce’s equations, equation for the velocity quasi-potential=j Ay, wherei andj are integers andx and Ay are the
the Andreev—Rusakov—Blokhintzev equation, etc. Most ofgrid intervals in thex- andy-directions. Thex-components
these equations have narrower ranges of applicability thagf the acoustic velocityw,, are staggere¢bffset by Ax/2
the equations presented above and have been seldom usgdhe x-direction. They-components of the acoustic veloc-

for calculations ofp.

V. NUMERICAL IMPLEMENTATION

ity, wy, are staggered biy/2 in they-direction. This stag-
gered grid design is widely used for wave propagation cal-
culations in nonmoving medid3° Here we furthermore
storev, andF, at thew, nodes, and, andF, at thew,
nodes. The quantitids, «, andQ are stored at the pressure

In this section, we describe simple algorithms for FDTD nodes.

solutions of Eqs(17) and(18) in the two spatial dimensions

For simplicity, we consider in this article only a second-

x andy. Isolating the partial derivatives with respect to time order accurate, spatially centered FD scheme. A centered so-

on the left side of these equations, we have

mp 2
E—— vxﬁ_X l)y@ P—k

J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005

W,
X

+xQ, (52

W
My
ay

Ostashev et al.: Moving media finite difference time domain equations

lution of Egs.(52)—(54) requires an evaluation of each of the

terms of the right-hand sides of these equations at the grid
nodes where the field variable on the left-hand side is stored.
One of the main motivations for using the spatially staggered
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grid is that it conveniently provides compact, centered spati
differences for many of the derivatives in Eq$2)—(54).
For examplegw, /dx in Eq. (52) is

AW (i AX, ] Ay, t) ax={w,[ (i +1/2)AX,] Ay,t]
—w,[(i—1/2)Ax,j Ay, t]H/Ax (55
anddp/dy in Eq. (54) is
apli Ax,(j+1/2)Ay,t]/ oy
={p[i AX,(j+1)Ay,t]—p[i Ax,j Ay,t]}/Ay. (56)

The derivativesdp/dx and dw,/dy follow similarly. The

body source terms can all be evaluated directly, since the%
are already stored at the grid nodes where the FD approxi-

mations are centered. The same is truecoivhich is stored
at the pressure grid nodes and needed in(&2). Regarding
Egs.(53) and(54), the values fob can be determined at the
needed locations by averaging neighboring grid points.

The implementation of the remaining terms, particular to
the moving medium, is somewhat more complicated. Fo

example, the derivatives of the pressure field in Exp),
aplax and dpl/dy, cannot be centered at=i Ax andy
=j Ay from approximations across a single grid interval

Centered approximations can be formed across two grid i
tervals, however, as suggested in Ref. 2. For example,

ap(i Ax,j Ay,t)/dx
={p[(i+1)Ax,j Ay,t]—p[(i—21)Ax,] Ay,t]}/2Ax.
(57

Neighboring grid points can be averaged to find the win
velocity componenty, and v, at x=i Ax and y=j Ay,
which multiply the derivativesip/dx and dp/dy, respec-
tively, in Eq. (52). Similarly, the spatial derivatives of the
particle velocities in Eq953) and(54) can be approximated
over two grid intervals. In Eq.53), the quantitiesv, andv,,
(multiplying the derivativesdv,/dy and dw,/dy, respec-
tively) are needed at the grid point=(i +1/2)Ax andy

=] Ay. Referring to Fig. 1, a reasonable way to obtain thes
guantities would be to average the four closest grid nodes

w,[ (i +1/2)Ax,j Ay,t]
1

20w+ DAX,(j+12)Ay.1]

+wy[i Ax,(j+1/2)Ay,t]

+wy[ (i +1)AX,(j—1/2)Ay,t]

+wy[i AX,(j = 1/2)Ay,t]}, (58)

and likewise forv, . The quantitiesv, andv,, multiplying
the derivativesiv, /dx and ow,/dx in Eq. (54), can be ob-
tained similarly.

B. Advancing the solution in time

Let us define the function,, f,, andf, as the right-
hand sides of Eqgs(52), (53), and (54), respectively. For
example, we write
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abp(i Ax,j Ay,t)
at

=fpli Ax,J Ay,p(t),wy(t),wy (1), s() ],

where p(t), w,(t), andw,(t) are matrices containing the
pressures and acoustic velocities at all available grid nodes.
For conveniencex(t) is used here as short hand for the com-
bined source and medium propertids (, vy, vy, Q, Fy,
and F,) at all available grid nodes.(Note that
foli AX,j Ay,p(t),w,(t),wy(t),s(t)] in actuality depends
only on the fields at a small number of neighboring grid
oints of ( AXx,j Ay) when second-order spatial differencing
used. The notation here is general enough, though, to ac-
ommodate spatial differencing of an arbitrarily high order.
For a nonmoving medium, the solution is typically ad-
vanced in time using a staggered temporal grid, in which the
pressures are stored at the integer time stefsAt and the
particle velocities at the half-integer time steps: (I
o+ 1/2)At.>’*°The acoustic velocities and pressures are up-
dated in an alternating “leap-frog” fashion, with the fields
from the previous time step being overwritten in place. Con-
sidering the moving media equations, approximation of the
nt_ime derivative in Eq(59) with a finite difference centered
on t=(1+1/2)At (that is, dp[i Ax,j Ay,(I+1/2)At]/at
={p[i Ax,j Ay,(I+1)At]—p[i Ax,j Ay,| At]}/At) results
in the following equation for updating the pressure field:

(59

C

pli Ax,j Ay,(1+1)At]
=pli Ax,j Ayl At]+At i Ax,j Ay,p[(I+1/2)At],
w [ (1+1/2)At],wy[ (1+ 1/2)At], 8 (| + 1/ At]],
(60)

Note that this equation requires the pressure field at the half-
integer time steps, i.et= (I +1/2)At. In the staggered leap-
frog scheme, however, the pressure is unavailable at the half-
integer time steps. A similar centered approximation for the
acoustic velocities indicates that they are needed on the in-
_(?eger time steps in order to advance the solution, which is
"again problematic. If one attempts to address this problem by
linearly interpolating between adjacent time stéps., by
setting p[ (I +1/2)At]={p[l At]+p[(I+21)At]}/2 in Eg.
(60)), explicit updating equationg solution of Eq.(60) for
pli Ax,j Ay,(I+1)At] that does not require the pressure
field at nearby grid points at the time step (I +1)At) can-
not be obtained. Hence the customary staggered leap-frog
approach does not lead to an explicit updating scheme for the
acoustic fields in a moving medium. The staggered leap-frog
scheme can be rigorously implemented only when the terms
particular to the moving mediurtthose involvingv, andv )
are removed from Eqg$52)—(54).

A possible work-around would be to use the pressure
field p(I At) in place ofp[ (I +1/2)At] when evaluating,,,
and w,[(I-1/2)At] and w,[(I-1/2)At] in place of
w (I At) andw, (I At) when evaluatindg, andf, . This non-
rigorous procedure uses the Eulé¢forward difference
method to evaluate the moving-media terms while maintain-
ing the leap-frog approach for the remaining terms. From a
programming standpoint, the algorithm proceeds in essen-

d
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tially the same manner as the staggered leap-frog method faf FDTD techniques for simulating sound propagation in a
a nonmoving medium. The calculations in Ref. 2 appear tanoving atmosphere. We have not undertaken a comprehen-
use such a procedure. But the stability and accuracy of thisive comparative analysis of the many alternative numerical
algorithm are unclear. An alternative is provided in Ref. 4,strategies available for the solution of Eq47) and (18).
which uses a perturbative solution based on the assumptiddowever, several of these approachesluding the pseu-
that the flow velocity is small. dospectral method, higher-order spatial and/or temporal
Here we would like to develop a general technique thafinite-difference operators, and the dispersion relation pre-
is applicable to high Mach numbers. The simplest way toserving (DRP) technique yield accurate simulations of
accomplish this is to abandon the staggered temporal gridound propagation with fewer grid intervals per wavelength
and form centered finite differences ovevo time steps. compared with our numerical examples. In particular, the
The pressure updating equation, based on the approximatidbRP method, involving optimized numerical values of the
ap(i Ax, jAy, TAt)/at={p[i Ax, Ay, (I+1)At] finite-difference operator coefficients.g., Ref. 18 can be
—p[i Ax, jAy,(I-21)At]}/12At, is readily introduced into our FDTD algorithmic framework.

pli Ax,j Ay,(1+1)At]

=pli Ax,j Ay,(I-1)At] C. Dependence of grid increments on Mach number
+2 At f[i Ax,j Ay,p(l At),w, (1 At), For numerical stability of the 2-D FDTD calculation, the
time stepAt and grid spacing\r must be chosen to satisfy
wy(I At),s(1 AD)]. (61) the Courant conditionC<1A2 (e.g., see Ref. 33where the
Similarly, we derive Courant number is defined as
i i uAt
w,[ (1 +1/2)Ax,j Ay, (I +1)At] o 64)

T Ar

. Here,u is the speed at which the sound energy propagates.
+12)Ax,j Ay,p(l AL, wy (I AL, wy (I At),s(T AD], [For a nonuniform gridAr = 1/\/(AX) 2+ (Ay) 2.] Since
(62) the grid spacing must generally be a small fraction of a
wavelength for good numerical accuracy, the Courant condi-
wy[i Ax,(j+1/2)Ay,(1+1)At] tion in practice imposes a limitation on the maximum time
—w,[i Ax,(j+ /2 Ay, (1 - 1)At] igp possible for stable calculations. An even smaller time
p may be necessary for good accuracy, however.
+2 At f[i A, (j+1/2)Ay,p(l At),wy Let us consider the implications of the Courant condi-
tion for propagation in a uniform flow. In this case, is
(FAD), wy(I A1), ST AL ]. (63 determined by a combination of the sound speed and wind

Somewhat confusingly, this general temporal updating’€locity. In the downwind direction, we have=u.=c
scheme has also been called the “leap-frog” scheme in the¢"v- In the upwind directionu=u_=c—v. The wave-
literature3! since it involves alternately overwriting the lengths in these two directions ake, =(c+v)/f and A_
wavefield variables at even and odd integer time steps based(C—v)/f, respectively, wheré is the frequency. Since the
on calculations with the fields at the intervening time step\Wavelength is shortest in thepwind direction, the value of
We call this scheme here theonstaggered leap-frogThe M- dictates the grid spacing. We set
primary disadvantage, in comparison to the staggered leap- Y
frog scheme, is that the fields must be stored over two time Ar=-—=-=(1-M), (65)

) . X . N N
steps, rather than just one. Additionally, the numerical dis-
persion and instability characteristics are inferior to those ofvhereN is the number of grid points per wavelength in the
the conventional staggered scheme due to the advancemamiwind directionM =v/c is the Mach number, and=c/f
of the wavefield variables over two time steps instead of oneis the wavelength for the medium at restNfis to be fixed
On the other hand, the nonstaggered leap-frog does providead a constant value, a finer grid is requiredMsincreases.
simple and rigorous centered finite-difference scheme that iRegarding the time step, the Courant condition implies
not specialized to low Mach number flows. Other common N
numerical integration methods, such as the Runge—Kutta At<_—. (66)
family, can also be readily applied to the nonstaggered-in- Nu

time grid. Some of the calculations following later in this This condition is most difficult to meet whem is largest,
section use a fourth-order Runge—Kutta method, which igyhich is the case in thdownwinddirection. Therefore we
described in Ref. 32 and many other texts. We have alsgyyst useu, in the preceding inequality if we are to have

developed a staggered-in-time method that is valid for highyccurate results throughout the domain; specifically, we must
Mach numbers but requires the fields to be stored over twg¢
time levels. This method was briefly discussed in Ref. 6.

Note that our present numerical modeling efforts are di- Ao 1 1-M 67

rected toward demonstrating the applicability and feasibility At<Nu+ TNf1+M

—w,[(i+1/2)Ax,] Ay, (1 —1)At]+2 At f,[(i
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y v Here, k=w/c, H{Y, andH{? are the Hankel functions
- =kry1—MZsir? a/(1-M?), andr and« are the polar coor-
dinates shown in Fig. 2. F&r> 1, the Hankel functions can
(o Receiver be approximated by their asymptotics. This results in the
desired formula for the sound pressure:

A(V1—MZsirf a—M cosa)

p(r,a,M)=

a x V27kr(1—M?)(1—M?sir? a)*
souweT " i(VI—MZsir? a—M cosa)kr i
FIG. 2. The geometry of the problem.
(72)
Therefore the time step must also be shortenedviain- Note that a sound field due to a point monochromatic source

creases. For example, the time stepvat 1/3 must be 1/2 in a_2-D_ homogeneous u_niformly moving medium was also
the value necessary ht=0. At M =2/3, the time step must studied in Ref. 18 by a different approach. The phase factor
be 1/5 the value a1 = 0. The reduction of the required time obtained in that reference is essentially the same as that in

step and grid spacing combine to make calculations at larg€d- (72 Only a general expression for the amplitude factor
Mach numbers computationally expensive. was presented in Ref. 18 which does not allow a detailed

comparison with the amplitude factor in Eq.2).

Let us now consider the FDTD calculations of the sound
field for the geometry in Fig. 2. In these calculations, the
source consists of a finite-duration harmonic signal with a

In this subsection, we use the developed algorithm forcosine taper function applied at the beginning and the end.
FDTD solutions of Eqs(52)—(54) to compute the sound The tapering alleviates numerical dispersion of high frequen-
field p in a 2-D homogeneous uniformly moving medium. cies, which becomes evident when there is an abrupt change
The geometry of the problem is shown in Fig. 2. A pointin the source emission. The tapered source equation is
monochromatic source is located e}t the orig_in of the Carte- ( (12)[1-cog mt/T,)|cos 27 f + ),
sian coordinate systemy. The medium velocity is paral-
lel to thex-axis. We will first obtain an analytical formula for O=t<Ty,

p for this geometry. - cog2nf+¢), T1<t<T-T,,

In a homogeneous uniformly moving medium,e, and ~ Q(t)= (UD[1+ o m(t—T)ITy)]cog 27F + ), (73
v are constant so th&f-v=0 andVP=0. Therefore, Egs.
(17) and (18) describe sound propagation exactly for this T—To<t<T,
case and are valid for an arbitrary value of the Mach number | 0, otherwise.
M. They can be written as

D. Example calculations

Here, ¢ is the source phasd, is the duration of the initia-

d ) o, tion taper, and’, is the duration of the termination taper. All
s VvV ptecV-w=ecQ, (68 calculations in this paper use tapering over an interval of 3
v periods in the harmonic wavel(=T,=3/f) and a total
—+Vv-V |w+ vpP =0. (69) S|gna! duration of 10 periodslE 1o/f ). '
at 0 Figure 3 shows the pressure field for a 100 Hz source in

a uniform Mach 0.3 flow. The field is shown at 0.11 s, or
0.01 s after the source has been turned off. The distance
between wave fronts is smaller upwind than downwind. The
_2IA calculations use the fourth-order Runge—Kutta method with
Q= Q—we o(x) &(y), (70 a staggered spatial grid and a nonstaggered temporal grid.
The spatial domain is 100 m by 100 m, with 800 grid points
in each direction. This results in approximately 19 grid
points per wavelength in the upwind direction. The time step
was set to 0.145 ms, which implies a Courant number of 0.40
in a nonmoving medium but 0.52 in the downwind direction
of the M =0.3 flow. Using the run shown in Fig. 3, the azi-

Here,p andw are functions of the coordinat@s y and time
t, V=(d/9x,9/3y), and the functiorQ is given by

where é is the delta function and the factér characterizes
the source amplitude. In Eq&68) and(69), for simplicity, it
is assumed th&E=0.

Assuming thab <c, the following solution of Eqs(68)
and (69) is obtained in the Appendix:

p(r,a,M) muthal dependence of the normalized sound pressure magni-
_ _ tude|p(r,a,M)/p(r,0,0)| for values ofkr ranging from 1 to
_ 1A HD( ) — IM cosa B 100 was compared to the theoretical far-field result calcu-
T 2(1-Mm3)32| o (& J1-MZsiPa * (& lated from Eq.(72). Excellent agreement was found between

theoretical predictions and FDTD simulations far= 10.
The azimuthal dependence fi(r,«,M)/p(r,0,0) at

(72) kr=20 is compared for several numerical methods in Fig. 4.

» ikMr cosa
S VAL
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Mach 0.3, Time =0.110s

FIG. 3. Wavefronts of the sound pressure due to a point
source located at the poink=0 and y=0 for M
=0.3. The medium velocity is in the direction of the
X-axis.
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40 -30 -20 -10 0 10 20 30 40 50
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The methods include the staggere@vith forward- observed as the calculation progressed. We conclude that the
differencing of the moving medium terms mentioned in Secstaggered leap-frog approach, when applied to a moving me-
V B) and nonstaggered leap-frog approaches and the fourtldium, is less accurate and more prone to numerical instabil-
order Runge—Kautta. The time step for the leap-frog methodgy. This is likely due to the nonsymmetric temporal finite
was 0.036 mg1/4 that used for the Runge—Kuttao that  difference approximations for the moving medium terms.

the computational times of all calculations are roughly equal.  Figure 6 shows the azimuthal dependence of
The Runge—Kutta and nonstaggered leap-frog providép(r,a,M)/p(r,0,0) for M=0, 0.3, and 0.6. All FDTD cal-
graphically indistinguishable results. The staggered leapeulations for this figure use the fourth-order Runge—Kutta
frog, however, systematically underpredicts the amplitude iimethod. Two calculated curves are shown: one for a low-
the downwind direction and overpredicts in the upwind di-resolution run with 808800 grid points and a time step of
rection. The actual sound pressure signals=a.11 s, cal- 0.145 ms, and the other for a high-resolution run with 1600
culated from the staggered and nonstaggered leap-frog ap<1600 grid points and a time step of 0.0362 ms. Kbr
proaches, are overlaid in Fig. 5. In the downwind direction,=0.3, both grid resolutions yield nearly exact agreement
the staggered leap-frog method provides a smooth predictiowith Eq. (72). At M=0.6, the low-resolution run has 11

at distances greater than about 22 m. The noisy appearancespiatial grid nodes per wavelength in the upwind direction
shorter distances is due to numerical instability, which wasand a downwind Courant number of 0.64. The high-
clear from the rapid temporal growth of these features weaesolution grid has 22 spatial grid nodes per wavelength in

1.4 T T T T r r . .
= = staggered leapfrog T ——
----- non-staggered leapfrog
| | '='+ Runge-Kutta 4 |
1.3
—— theory

FIG. 4. Normalized sound pressure amplitude
|p(r,a,M)/p(r,0,0)| versus the azimuthal angte for
M=0.3 andkr=20. The staggered and nonstaggered
leap-frog methods and the fourth-order Runge—Kutta
are compared to the theoretical solution. The nonstag-
gered leap-frog and Runge—Kutta methods are graphi-
cally indistinguishable.

Normalized sound pressure amplitude

0.7 L L L L L L L L
0 20 40 60 80 100 120 140 160 180

Azimuth, o (deg)
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the upwind direction and a downwind Courant number offrequency is 100 Hz. The computational domain is 200 m by
0.32. Agreement with theory &l =0.6 is very good for the 100 m and has 600 by 300 grid points. The time step is
high-resolution run. The low-resolution run substantially un-7,73x 10" % s and the fourth-order Runge—Kutta method is
derpredicts the upwind amplitude. used. A rigid boundary condition is applied at the ground
Finally note that it follows from Figs. 4 and 6 that the g rface =0 m). An absorbing layer in the upper one-fifth
sound pressure is largest far=180°, i.e., in the upwind ¢ the simulation domain removes unwanted numerical re-
direction. This dependence is also evident upon close examjfections, (The implementation of the rigid ground boundary
nation in Fig. 3. condition and the absorbing layer is described in Ref. 34.
Realistic ground boundary conditions in a FDTD simulation
E. Comparison of FDTD and FFP calculations of sound propagation in the atmosphere are considered in
The computational examples so far in this paper haveief. 35)
been for uniform flows. However, the numerical methods ~ Calculated transmission logsound level relative to free
and equations upon which they are based apply to nonunppace &1 m from the sourceresults are shown in Figs(&
form flows as well. In this section, we consider an exampleand 1b). The first of these figures is for a zero-wind condi-
calculation for a flow with constant shear. The point sourceiion and the second is for a horizontat-direction wind
and receiver are both located at a height of 20 m and thepeed ofy (y) = uy, where the gradieni is 1 s 1. For Fig.
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7(a), the FDTD results are compared with both the exactspeedc, densitye, medium velocityv, pressureP, and the
solution for a point source above the rigid boundary antharametersy, g, andh. The atmosphere can be modeled as
calculations from the FFP developed in Ref. 36. The FDTDy, jgeal gas to a very good accuracy. In this case, the first set
results are nearly indistinguishable from the exact solution equations simplifies and is given by E€S), (6), and(15).

The FFP is also in good agreement, although there is somgq\y it contains the following ambient quantities; o, v
systematic underprediction of the interference minima, pary,qp

ticularly so near the source. This is likely due to the far-field

approxihmation_ in}%ererr]lt to thfe FFP. For the _cas;ﬂwgh Cr?nfions contains two coupled equations for the sound pressure
stant shear, Fig.(B), the interference pattern is shifted. The "o " coustic velocity, Egs. (17) and (18). In order to

FDTD and FFP continue to show very similar small discrep-solve this set one needs to know a fewer number of the

ancies near the source. On the basis of the results shown jn . quantitiesc, o, andv. Note that namely these am-

Fig. 7(@), itis hlghly_ likely thqt the FDTD is more accurate. bient quantities appeared in most of equations for the sound
The FDTD calculations required about 100 times as long t ressurep which have been previously used for analytical

complete as the FFP on a single-processor computer. Az?nd numerical studies of outdoor sound propagation. The
would be expected, the FFP is more efficient for calculations propag :

o . . .._second set was derived from Eq®&)—(8) assuming that
at a limited number of frequencies in a horizontally stratified . . : .
medium. terms proportional to the divergence of the medium velocity

and the gradient of the ambient pressure can be ignored.
Both these assumptions are reasonable in atmospheric acous-
VI. CONCLUSIONS tics. To better understand the range of applicability of the

In the present paper, we have considered starting equ§_econd set, iF was compared with equations for the sgund
tions for FDTD simulations of sound propagation in a mov-Pressurep which have been most often used for analytical
ing inhomogeneous atmosphere. FDTD techniques can pr@l.nd numerical studies of sound propagation in a moving in-
vide a very accurate description of sound propagation iflomogeneous medium. It was shown that the second set has
complex environments. the same or wider range of applicability than these equations

A most general description of sound propagation in afor p. Thus, a relatively simple set of Eqél7) and (18),
moving inhomogeneous medium is based on the complet@hich is however rather general, seems very attractive as
set of linearized equations of fluid dynamics, E¢®—(8).  starting equations for FDTD simulations.

However, this set is too involved to be effectively employed ~ The numerical algorithms for FDTD solutions of the

in FDTD simulations of outdoor sound propagation. In thissecond set of equations were developed for the case of a 2-D
paper, the linearized equations of fluid dynamics were reinhomogeneous moving medium. It was shown that the
duced to two simpler sets of equations which can be used a$aggered-in-time grid approach commonly applied to non-
starting equations for FDTD simulations. moving media cannot be applied directly for the moving

The first set of equations contains three coupled equasase. However, fairly simple alternatives based on
tions, Egs(5), (6), and(13), for the sound pressum acous- nonstaggered-in-time grids are available. We used the result-
tic velocity w, and acoustic density. This set is an exact ing algorithms to calculate the sound pressure due to a point
consequence of the linearized equations of fluid dynamicssource in a homogeneous uniformly moving medium. The
Egs.(5)—(8). To solve the first set of equations, one needs taesults obtained were found in excellent agreement with ana-
know the following ambient quantities: the adiabatic soundlytical predictions even for a Mach number as high as 0.6.

The second set of starting equations for FDTD simula-
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APPENDIX: SOUND FIELD DUE TO A POINT
MONOCHROMATIC SOURCE IN A HOMOGENEOUS
UNIFORMLY MOVING MEDIUM

In this appendix, we derive a formula for the sound pres-
sure due to a point monochromatic source located in a 2-D
homogeneous uniformly moving mediufsee Fig. 2

For this geometry, Eq$68) and(69) can be reduced to
a single equation for the sound pressure:

Transmission loss (dB)

—+v-V

o Q. (A1)

2 d
p—cZVszgcz(a—tJrv-V

0 20 20 ) 80 100 120

Range (m) Here, the source functio@ is given by Eq(70) and contains

— the time factor exp{iwt). In what follows, this time factor is

------ FFP omitted. Furthermore, taking into account that the medium
T velocity is parallel to thec-axis, Eq.(Al) can be written as

(92 2 2

. (7 (9
W‘F (9—y2+k2+2|kM&_Mzﬁ> p(X,Y)

20

10} (b)

_2IA[, P
P e

Let

S5(x)8(y). (A2)

Transmission loss (dB)

B 2iA
p(x,y)= o

J
iw—v&>®(x,y). (A3)

Substituting this formula into EqA2), we obtain the follow-
ing equation for the functiod(x,y):

? P d\2
—2+—2—( _|k+M&)

0 20 40 60 80 100 120
Range (m)

FIG. 7. Comparisons between the transmission loss calculated with different IX ay (I)(X’y) =8(x) 5(y)'
methods(a) Homogeneous atmosphere without willo). Atmosphere with (A4)
linearly increasing wind velocity.

In this equation, let us make the following transformations:

Furthermore, using the algorithm developed, we calculated  x=.,1—M2x, k=.1-MZ2K,

the sound field due to a point source in a stratified moving

atmosphere. The results obtained are in a good agreement P(X,y)=exp—iKMX)¥(X.y). (A5)

with the FFP solution. As a result, we obtain the following equation for the fuinc-
Finally note that Eqs(17) and (18) have already been tjon w(X,y):

used as starting equations in FDTD simulations of sound

propagation in 3-D moving media with realistic velocity PP 5 1
fields. The results obtained were published in proceedings of | gx2 * 7y2 KIP(Xy)= 1—M2 AX)a(y)-  (A8)

conferences ® These realistic velocity fields include the fol- ) _ o
lowing: kinematic turbulence generated by quasi-wavététs, A solution of this equation is well known:

3-D stratified moving atmosphefeand atmospheric turbu- i

lence generated by large-eddy simulatidn. Ref. 8, FDTD W(X,y)=— —2H(()1)(K\/X2+y2). (A7)
simulations were used to numerically study infrasound vi—-M

propagation in a moving atmosphere over distances of se\jsing this expression fo# and Egs.(A3) and (A5), we

eral hundred km. The largest run to date incorporated ovegptain a desired formula for the sound pressure of a point

1.5 billion nodes and took about 100 hours on 500 Compagnonochromatic source in a 2-D homogeneous uniformly
EV6 parallel processofs. moving medium:

A M
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